イメージ画像
  1. TOP
  2. 業績

業績

Journal

2017 | 2018 | 2019 | 2020 | 2021 | 2022

 

2017

  1. Nakajima-Adachi, H., Shibahara, K., Fujimura, Y., Takeyama, J., Hiraide, E., Kikuchi, A., Murakami, H., Hosono, A., Nochi, T., Wakatsuki, Y., Shimojo, N., Kaminogawa, S., Sato, R., Kiyono, H. and Hachimura, S. 2017. Critical role of intestinal interleukin-4 modulating regulatory T Cells for desensitization, tolerance, and inflammation of food allergy. PLoS One. 12: e0172795. (2017)
    (Critical role of intestinal interleukin-4 modulating regulatory T cells for desensitization, tolerance, and inflammation of food allergy - PubMed (nih.gov))
  2. Shimokawa, C., Kanaya, T., Hachisuka, M., Ishiwata, K., Hisaeda, H., Kurashima, Y., Kiyono, H. , Tomohiro, Y., Kaisho, T. and Ohno, H. 2017. Mast Cells Are Crucial for Induction of Group 2 Innate Lymphoid Cells and Clearance of Helminth Infections. Immunity. 46: 863-874. (2017)
    (Mast Cells Are Crucial for Induction of Group 2 Innate Lymphoid Cells and Clearance of Helminth Infections - PubMed (nih.gov))
  3. Ogawa, T., Kashima, K., Yuki, Y., Mejima, M., Kurokawa, S., Kuroda, M., Okazawa, A., Kiyono, H. and Ohta, D. 2017. Seed metabolome analysis of a transgenic rice line expressing cholera toxin B-subunit. Sci. Rep. 7: 5196. (2017)
    (Seed Metabolome Analysis of a Transgenic Rice Line Expressing Cholera Toxin B-subunit - PubMed (nih.gov))
  4. Kishikawa, S., Sato, S., Kaneto, S., Uchino, S., Kohsaka, S., Nakamura, S. and Kiyono, H. 2017. Allograft inflammatory factor 1 (Aif1) is a regulator of transcytosis in M cells. Nature Commun. 8: 14509. (2017)
    (Allograft inflammatory factor 1 is a regulator of transcytosis in M cells - PubMed (nih.gov))
  5. Toyoshima, S., Wakamatsu, E., Ishida, Y., Obata, Y., Kurashima, Y., Kiyono, H. and Abe, R. 2017. The spleen is the site where mast cells are induced in the development of food allergy. Int. Immunol. 29: 31-45. (2017)
    (The spleen is the site where mast cells are induced in the development of food allergy - PubMed (nih.gov))
  6. Azegami, T., Yuki, Y., Sawada, S., Mejima, M., Ishige, K., Akiyoshi, K., Itoh, H. and Kiyono, H. 2017. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol. 10: 1351-1360. (2017)
    (Nanogel-based nasal ghrelin vaccine prevents obesity - PubMed (nih.gov))
  7. Tada, R., Muto, S., Iwata, T., Hidaka, A., Kiyono, H. , Kunisawa, J. and Aramaki, Y. 2017. Attachment of class B CpG ODN onto DOTAP/DC-chol liposome in nasal vaccine formulation augments antigen-specific immune responses in mice. BMC Biotechnol. 10: 68. (2017)
    (Attachment of class B CpG ODN onto DOTAP/DC-chol liposome in nasal vaccine formulations augments antigen-specific immune responses in mice - PubMed (nih.gov))
  8. Furuta, Y., Tsai, S.H., Kinoshita, M., Fujimoto, K., Okumura, R., Umemoto, E., Kurashima, Y., Kiyono, H. , Kayama, H. and Takeda, K. 2017. E-NPP3 controls plasmacytoid dendritic cell numbers in the small intestine. PLoS One. 12: e0172509. (2017)
    (E-NPP3 controls plasmacytoid dendritic cell numbers in the small intestine - PubMed (nih.gov))
  9. Jinnohara, T., Kanaya, T., Hase, K., Sakakibara, S., Kato, T., Tachibana, N., Sasaki, T., Hashimoto, Y., Sato, T., Watarai, H., Kunisawa, J., Shibata, N., Williams, I., Kiyono, H. and Ohno, H. 2017. IL-22 BP dictates characteristics of Peyer’s patch follicle-associated epithelium for antigen uptake. J. Exp. Med. 214: 1607-1618. (2017)
    (IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake - PubMed (nih.gov))
  10. Kim, S.H., Cho, B.H., Kiyono, H. and Jang, Y.S. 2017. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches. Sci. Rep. 7: 3980. (2017)
    (Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer's patches - PubMed (nih.gov))
  11. Takahashi, Y., Sato, S., Kurashima, Y., Lai, C-Y., Otsu, M., Hayashi, M., Yamaguchi, T. and Kiyono, H. 2017. Reciprocal inflammatory signaling between intestinal epithelial cells and adipocytes in the absence of immune cells. EbioMedicine. 23: 34-45. (2017)
    (Reciprocal Inflammatory Signaling Between Intestinal Epithelial Cells and Adipocytes in the Absence of Immune Cells - PubMed (nih.gov))
  12. Koyanagi, N., Imai, T., Shindo, K., Sato, A., Fujii, W., Ichinohe, T., Takemura, N., Kakuta, S., Uematsu, S., Kiyono, H. , Maruzuru, Y., Arii, J., Kato, A. and Kawaguchi, Y. 2017. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J. Clin. Invest. 127: 3784-3795. (2017)
    (Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis - PubMed (nih.gov))
  13. Ito, T., Hirose, K., Saku, A., Kono, K., Takatori, H., Tamachi, T., Goto, Y., Renauld, J.C., Kiyono, H. and Nakajima, H. 2017. IL-22 induces Reg3γ and inhibits allergic inflammation in house dust mite-induced asthma models. J. Exp. Med. 214: 3037- 3050. (2017)
    (IL-22 induces Reg3γ and inhibits allergic inflammation in house dust mite-induced asthma models - PubMed (nih.gov))
  

2018

  1. Takahashi, Y., Sato, S., Kurashima, Y., Yamamoto, T., Kurokawa, S., Yuki, Y., Takemura, N., Uematsu, S., Lai, C.Y., Otsu, M., Matsuno, H., Osawa, H., Mizushima, T., Nishimura, J., Hayashi, M., Yamaguchi, T. and Kiyono, H. 2018. A refined culture system for human induced pluripotent stem cell-derived intestinal epithelial organoids. Stem Cell Reports. 10: 314-328. (2018)
    (A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids - PubMed (nih.gov))
  2. Azegami, T., Yuki, Y., Hayashi, K., Hishikawa, A., Sawada, S.I., Ishige, K., Akiyoshi, K., Kiyono, H. and Itoh, H. 2018. Intranasal vaccination against angiotensin II type 1 receptor and pneumococcal surface protein A attenuates hypertension and pneumococcal infection in rodents. J. Hypertens. 36: 387-394. (2018)
    (Intranasal vaccination against angiotensin II type 1 receptor and pneumococcal surface protein A attenuates hypertension and pneumococcal infection in rodents - PubMed (nih.gov))
  3. Nagatake, T., Shiogama, Y., Inoue, A., Kikuta, J., Honda, T., Tiwari, P., Kishi, T., Yanagisawa, A., Isobe, Y., Matsumoto, N., Shimojou, M., Morimoto, S., Suzuki, H., Hirata, S.I., Steneberg, P., Edlund, H., Aoki, J., Arita, M., Kiyono, H. , Yasutomi, Y., Ishii, M., Kabashima, K. and Kunisawa, J. 2018. The 17,18-epoxyeicosatetraenoic acid-G protein-coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. J. Allergy Clin. Immunol. 142: 470-484.e12. (2018)
    (The 17,18-epoxyeicosatetraenoic acid-G protein-coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques - PubMed (nih.gov))
  4. Suzuki, H., Nagatake, T., Nasu, A., Lan, H., Ikegami, K., Setou, M., Hamazaki, Y., Kiyono, H. , Yagi, K., Kondoh, M. and Kunisawa, J. 2018. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice. Sci. Rep. 8: 2904. (2018)
    (Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice - PubMed (nih.gov))
  5. Takemura, N., Kurashima, Y., Mori, Y., Okada, K., Ogino, T., Osawa, H., Matsuno, H., Aayam, L., Kaneto, S., Park, E.J., Sato, S., Matsunaga, K., Tamura, Y., Ouchi, Y., Kumagai, Y., Kobayashi, D., Suzuki, Y., Yoshioka, Y., Nishimura, J., Mori, M., Ishii, K.J., Rothenberg, M.E., Kiyono, H. , Akira, S. and Uematsu, S. 2018. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci. Transl. Med. 21: 10(429). (2018)
    (Eosinophil depletion suppresses radiation-induced small intestinal fibrosis - PubMed (nih.gov))
  6. Hirukawa, S., Sagara, H., Kaneto, S., Kondo, T., Kiga, K., Sanada, T., Kiyono, H. and Mimuro, H. 2018. Characterization of morphological conversion of Helicobacter pylori under anaerobic conditions. Microbiol. Immunol. 62: 221-228. (2018)
    (Characterization of morphological conversion of Helicobacter pylori under anaerobic conditions - PubMed (nih.gov))
  7. Ouchi, Y., Patil, A., Tamura, Y., Nishimasu, H., Negishi, A., Paul, S.K., Takemura, N., Satoh, T., Kimura, Y., Kurachi, M., Nureki, O., Nakai, K., Kiyono, H. and Uematsu, S. 2018. Generation of tumor antigen-specific murine CD8+ T cells with enhanced anti-tumor activity via highly efficient CRISPR/Cas9 genome editing. Int. Immunol. 30:141-154. (2018)
    (Generation of tumor antigen-specific murine CD8+ T cells with enhanced anti-tumor activity via highly efficient CRISPR/Cas9 genome editing - PubMed (nih.gov))
  8. Niimi, K., Usami, K., Fujita, Y., Abe, M., Furukawa, M., Suyama, Y., Sakai, Y., Kamioka, M., Shibata, N., Park, E.J., Sato, S., Kiyono, H. , Yoneyama, H., Kitazawa, H., Watanabe, K., Nochi, T. and Aso, H. 2018. Development of immune and microbial environments is independently regulated in the mammary gland. Mucosal Immunol. 11: 643-653. (2018)
    (Development of immune and microbial environments is independently regulated in the mammary gland - PubMed (nih.gov))
  9. Shibata, N., Kunisawa, J., Hosomi, K., Fujimoto, Y., Mizote, K., Kitayama, N., Shimoyama, A., Mimuro, H., Sato, S., Kishishita, N., Ishii, K.J., Fukase, K. and Kiyono, H. 2018. Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunol. 11: 693-702. (2018)
    (Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity - PubMed (nih.gov))
  10. Tada, R., Suzuki, H., Takahashi, S., Negishi, Y., Kiyono, H. Kunisawa, Y. and Aramaki, Y. 2018. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int. Immunopharm. 61: 385–393. (2018)
    (Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice - PubMed (nih.gov))
  11. Tada, R., Hidaka, A., Kiyono, H. , Kunisawa, J. and Aramaki, Y. 2018. Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Research Notes. 11:472. (2018)
    (Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity - PubMed (nih.gov))
  12. Tada, R., Yamanaka, D., Ogasawara, M., Saito, M., Ohno, N., Kiyono, H. , Kunisawa, J. and Aramaki, Y. 2018. Polymeric caffeic acid is a safer mucosal adjuvant that augments antigen-specific mucosal and systemic immune responses in mice. Mol. Pharm. 15: 4226-4234. (2018)
    (Polymeric Caffeic Acid Is a Safer Mucosal Adjuvant That Augments Antigen-Specific Mucosal and Systemic Immune Responses in Mice - PubMed (nih.gov))
  13. Sato, S., Hisaie, K., Kurokawa, S., Suzki, A., Sakon, N., Uchida, Y., Yuki, Y. and Kiyono, H. 2018. Human Norovirus Propagation in Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells. Cell. Mol. Gastro. Hepatol. 7: 686-688.e5. (2018)
    (Human Norovirus Propagation in Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells - PubMed (nih.gov))

2019

  1. Tiwari, P., Nagatake, T., Hirata, S.I., Sawane, K., Saika, A., Shibata, Y., Morimoto, S., Honda, T., Adachi, J., Abe, Y., Isoyama, J., Tomonaga, T., Kiyono, H. , Kabashima, K. and Kunisawa, J. 2019. Dietary coconut oil ameliorates skin contact hypersensitivity through mead acid production in mice. Allergy. 74: 1522-1532. (2019)
    (Dietary coconut oil ameliorates skin contact hypersensitivity through mead acid production in mice - PubMed (nih.gov))
  2. Hashizume-Takizawa, T., Shibata, N., Kurashima, Y., Kiyono, H. , Kurita-Ochiai, T. and Fujihashi, K. 2019. Distinct roles for Peyer's patch B cells for induction of antigen-specific IgA antibody responses in mice administered oral recombinant Salmonella. Int. Immunol. 31: 531-541. (2019)
    (Distinct roles for Peyer's patch B cells for induction of antigen-specific IgA antibody responses in mice administered oral recombinant Salmonella - PubMed (nih.gov))
  3. Saku, A., Hirose, K., Ito, T., Iwata, A., Sato, T., Kaji, H., Tamachi, T., Suto, A., Goto, Y., Domino, S.E., Narimatsu, H., Kiyono, H. and Nakajima, H. 2019. Fructosyltransferase 2 induces lung epithelial fucosylation and exacerbates house dust mite-induced airway inflammation. J. Allergy Clin. Immunol. 144: 698-709.e9. (2019)
    (Fucosyltransferase 2 induces lung epithelial fucosylation and exacerbates house dust mite-induced airway inflammation - PubMed (nih.gov))
  4. Nishida, K., Hasegawa, A., Yamasaki, S., Uchida, R., Ohashi, W., Kurashima, Y., Kunisawa, J., Kimura, S., Iwanaga, T., Watarai, H., Hase, K., Ogura, H., Nakayama, M., Kashiwakura, J., Okayama, Y., Kubo, M., Ohara, O., Kiyono, H. , Koseki, H., Murakami, M. and Hirano, T. 2019. Mast cells play role in wound healing through the ZnT2/GPR39/IL-6 axis. Sci. Rep. 9: 10842. (2019)
    (Mast cells play role in wound healing through the ZnT2/GPR39/IL-6 axis - PubMed (nih.gov))
  5. Noval, R.M., Wakita, D., Franklin, M.K., Carvalho, T.T., Abolhesn, A., Gomez, A.C., Fishbein, M.C., Chen, S., Lehman, T.J., Sato, K., Shibuya, A., Fasano, A., Kiyono, H. , Abe, M., Tatsumoto, N., Yamashita, M., Crother, T.R., Shimada, K. and Arditi, M. 2019. Intestinal permeability and IgA provoke immune vasculitis linked to cardiovascular inflammation. Immunity. 51: 508-521.e6. (2019)
    (Intestinal Permeability and IgA Provoke Immune Vasculitis Linked to Cardiovascular Inflammation - PubMed (nih.gov))
  6. Fujimoto, K., Kawaguchi, Y., Shimohigoshi, M., Gotoh, Y., Nakano, Y., Usui, Y., Hayashi, T., Kimura, Y., Uematsu, M., Yamamoto, T., Akeda, Y., Rhee, J.H., Yuki, Y., Ishii, K.J., Crowe, S.E., Ernst, P.B., Kiyono, H. and Uematsu, S. 2019. Antigen-specific mucosal immunity regulates development of intestinal bacteria- mediated diseases. Gastroenterology. 157: 1530-1543.e4. (2019)
    (Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases - PubMed (nih.gov))
  7. Joo, S., Suwanto, A., Sato, A., Nakahashi-Ouchida, R., Mori, H., Uchida, Y., Sato, S., Kurashima, Y., Yuki, Y., Fujihashi, K., Kawaguchi, Y. and Kiyono, H. 2019. A role for the CCR5-CCL5 interaction in the preferential migration of HSV-2-specific effector cells to the vaginal mucosa upon nasal immunization. Mucosal Immunol. 12: 1391-1403. (2019)
    (A role for the CCR5-CCL5 interaction in the preferential migration of HSV-2-specific effector cells to the vaginal mucosa upon nasal immunization - PubMed (nih.gov))
  8. Tada, R., Ohshima, A., Tanazawa, Y., Ohmi, A., Takahashi, S., Kiyono, H. , Kunisawa, J., Aramaki, Y. and Negishi, Y. 2019. Essential role of host double-stranded DNA released from dying cells by cationic liposomes for mucosal adjuvanticity. Vaccines (Basel). 8: 8. (2019)
    (Essential Role of Host Double-Stranded DNA Released from Dying Cells by Cationic Liposomes for Mucosal Adjuvanticity - PubMed (nih.gov))

2020

  1. Takahashi, I., Hosomi, K., Nagatake, T., Tobou, H., Yamamoto, D., Hayashi, I., Kurashima, Y., Sato, S., Shibata, N., Goto, Y., Maruyama, F., Nakagawa, I., Kuwae, A., Abe, A., Kunisawa, J. and Kiyono, H. 2020. Persistent colonization of non-lymphoid tissue-resident macrophages by Stenotrophomonas maltophilia. Int. Immunol. 32: 133-141. (2020)
    (Persistent colonization of non-lymphoid tissue-resident macrophages by Stenotrophomonas maltophilia - PubMed (nih.gov))
  2. Isobe, J., Maeda, S., Obata, Y., Iizuka, K., Nakamura, Y., Fujimura, Y., Kimizuka, T., Hattori, K., Kim, Y-G., Morita, T., Kimura, I., Offermanns, S., Adachi, T., Nakao, A., Kiyono, H. , Takahashi, D. and Hase, K. 2020. Commensal-bacteria-derived butyrate promotes the t-cell-independent IgA response in the colon. Int. Immunol. 32: 243-258. (2020)
    (Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon - PubMed (nih.gov))
  3. Yuki, Y., Kurokawa, S., Sato, S., Sasou, A., Matsumoto, N., Suzuki, A., Sakon, N., Goda, Y., Takeyama, N., Miyoshi, T., Marcotte, H., Tanaka, T., Hammarstrom, L. and Kiyono, H. 2020. A heterodimeric antibody fragment for passive immunotherapy against norovirus infection. J. Infect. Dis. 222: 470-478. (2020)
    (A Heterodimeric Antibody Fragment for Passive Immunotherapy Against Norovirus Infection - PubMed (nih.gov))
  4. Nakamura, Y., Mimuro, H., Kunisawa, J., Furusawa, Y., Takahashi, D., Fujimura,Y., Kaisho, T., Kiyono, H. and Hase, K. 2020. Microfold cell-dependent antigen transport alleviates infectious colitis by inducing antigen-specific cellular immunity. Mucosal Immunol. 13: 679-690. (2020)
    (Microfold cell-dependent antigen transport alleviates infectious colitis by inducing antigen-specific cellular immunity - PubMed (nih.gov))
  5. Wang, Y., Hosomi, K., Shimoyama, A., Yoshii, K., Yamaura, H., Nagatake, T., Nishino, T., Kiyono, H. , Fukase, K. and Kunisawa, J. 2020. Adjuvant activity of synthetic lipid A of alcaligenes, a gut-associated lymphoid tissue-resident commensal bacterium, to augment antigen-specific IgG and Th17 responses in systemic vaccine. Vaccines (Basel). 8: 395. (2020)
    (Adjuvant Activity of Synthetic Lipid A of Alcaligenes, a Gut-Associated Lymphoid Tissue-Resident Commensal Bacterium, to Augment Antigen-Specific IgG and Th17 Responses in Systemic Vaccine - PubMed (nih.gov))
  6. Yoshii, K., Hosomi, K., Shimoyama, A., Wang, Y., Yamaura, H., Nagatake, T., Suzuki, H., Lan, H., Kiyono, H. , Fukase, K. and Kunisawa, J. 2020. Chemically synthesized alcaligenes lipid A shows a potent and safe nasal vaccine adjuvant activity for the induction of Streptococcus pneumoniae-specific IgA and Th17 mediated protective Immunity. Microorganisms. 8: 1102. (2020)
    (Chemically Synthesized Alcaligenes Lipid A Shows a Potent and Safe Nasal Vaccine Adjuvant Activity for the Induction of Streptococcus pneumoniae-Specific IgA and Th17 Mediated Protective Immunity - PubMed (nih.gov))
  7. Hirata, S., Nagatake, T., Sawane, K., Hosomi, K., Honda, T., Ono, S., Shibuya, N., Saito, E., Adachi, J., Abe, Y., Isoyama, J., Suzuki, H., Matsunaga, A., Tomonaga, T., Kiyono, H. , Kabashima, K., Arita, M. and Kunisawa, J. 2020. Maternal ω3 docosapentaenoic acid inhibits infant allergic dermatitis through TRAIL-expressing plasmacytoid dendritic cells in mice. Allergy. 75: 1939-1955. (2020)
    (Maternal ω3 docosapentaenoic acid inhibits infant allergic dermatitis through TRAIL-expressing plasmacytoid dendritic cells in mice - PubMed (nih.gov))
  8. Fujimoto, K., Kimura, Y., Shimohigoshi, M., Satoh, T., Sato, S., Tremmel, G., Uematsu, M., Kawaguchi, Y., Usui, Y., Nakano, Y., Hayashi, T., Kashima, K., Yuki, Y., Yamaguchi, K., Furukawa, Y., Kakuta, M., Akiyama, Y., Yamaguchi, R., Crowe, S.E., Ernst, P.B., Miyano, S., Kiyono, H. , Imoto, S. and Uematsu, S. 2020. Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts. Cell. Host Microbe. 28: 380-389.e9. (2020)
    (Metagenome Data on Intestinal Phage-Bacteria Associations Aids the Development of Phage Therapy against Pathobionts - PubMed (nih.gov))
  9. Hosomi, K., Shibata, N., Shimoyama, A., Uto, T., Nagatake, T., Tojima, Y., Nishino, T., Takeyama, H., Fukase, K., Kiyono, H. and Kunisawa, J. 2020. Lymphoid tissue- resident Alcaligenes establish an intracellular symbiotic environment by creating a unique energy shift in dendritic cells. Front. Microbiol. 11: 561005. (2020)
    (Lymphoid Tissue-Resident Alcaligenes Establish an Intracellular Symbiotic Environment by Creating a Unique Energy Shift in Dendritic Cells - PubMed (nih.gov))
  10. Matsumura, S., Kurashima, Y., Murasaki, S., Morimoto, M., Arai, F., Saito, Y., Katayama, N., Kim, D., Inagaki, Y., Kudo, T., Ernst, P.B., Shimizu, T. and Kiyono, H. 2020. Stratified layer analysis reveals intrinsic leptin stimulates cryptal mesenchymal cells for controlling mucosal inflammation. Sci. Rep. 10: 18351. (2020)
    (Stratified layer analysis reveals intrinsic leptin stimulates cryptal mesenchymal cells for controlling mucosal inflammation - PubMed (nih.gov))
  11. Takasato, Y., Kurashima, Y., Kiuchi, M., Hirahara, K., Murasaki, S., Arai, F., Izawa, K., Kaitani, A., Shimada, K., Saito, Y., Toyoshima, S., Nakamura, M., Fujisawa, K., Okayama, Y., Kunisawa, J., Kubo, M., Takemura, N., Uematsu, S., Akira, S., Kitaura, J., Takahashi, T., Nakayama, T. and Kiyono, H. 2020. Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal Immunol. 14: 640-651. (2020)
    (Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy - PubMed (nih.gov))

2021

  1. Sasou, A., Yuki, Y., Honma, A., Sugiura, K., Kashima, K., Kozuka-Hata, K., Nojima, M., Oyama, M., Kurokawa, S., Maruyama, S., Kuroda, M., Tanoue, S., Takamatsu, N., Fujihashi, K., Goto, E. and Kiyono, H. 2021. Comparative whole-genome and proteomics analyses of the next seed bank and the original master seed bank of MucoRice-CTB 51A line, a rice-based oral cholera vaccine. BMC Genomics. 22: 59. (2021)
    (Comparative whole-genome and proteomics analyses of the next seed bank and the original master seed bank of MucoRice-CTB 51A line, a rice-based oral cholera vaccine - PubMed (nih.gov))
  2. Parbie, P.K., Mizutani, T., Ishizaka, A., Kawana-Tachikawa, A., Runtuwene, L.R., Seki, S., Abana, C.Z., Kushitor, D., Bonney, E.Y., Ofori, S.B., Uematsu, S., Imoto, S., Kimura,Y., Kiyono, H. , Ishikawa, K., Ampofo, W.K. and Matano, T. 2020. Fecal microbiome composition in healthy adults in Ghana. Jpn. J. Infect. Dis. 74: 42-47. (2020)
    (Fecal Microbiome Composition in Healthy Adults in Ghana - PubMed (nih.gov))
  3. Shimoyama, A., Flaviana, D.L., Yamaura, H., Mizote, K., Palmigiano, A., Pither, M.D., Speciale, I., Uto, T., Masui, S., Sturiale, L., Garozzo, D., Hosomi, K., Shibata, N., Kabayama, K., Fujimoto, Y., Silipo, A., Kunisawa, J., Kiyono, H. , Molinaro, A. and Fukase, K. 2021. Lipopolysaccharide from gut-associated lymphoid tissue-resident alcaligenes faecalis: Complete structure determination and chemical synthesis of its lipid A. Angew. Chem. Int. Ed. Engl. 60: 10023-10031. doi: 10.1002/anie.202012374. Epub 2021 Mar 22. (2021)
    (Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A - PubMed (nih.gov))
  4. Tada, R., Ogasawara, M., Yamanaka, D., Sakurai, Y., Negishi, Y., Kiyono, H. , Ohno, N., Kunisawa, J. and Aramaki, Y. 2021. Enzymatically polymerised polyphenols prepared from various precursors potentiate antigen-specific immune responses in both mucosal and systemic compartments in mice. PLoS One. 16: e0246422. (2021)
    (Enzymatically polymerised polyphenols prepared from various precursors potentiate antigen-specific immune responses in both mucosal and systemic compartments in mice - PubMed (nih.gov))
  5. Fujimoto, K., Kimura, Y., Allegretti, J.R., Yamamoto, M., Zhang, Y.Z., Katayama, K., Tremmel, G., Kawaguchi, Y., Shimohigoshi, M., Hayashi, T., Uematsu, M., Yamaguchi, K., Furukawa, Y., Akiyama, Y., Yamaguchi, R., Crowe, S.E., Ernst, P.B., Miyano, S., Kiyono, H. , Imoto, S. and Uematsu, S. 2021. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology. 160: 2089-2102.e12. doi: 10.1053/j.gastro.2021.02.013. Epub 2021 Feb 9. (2021)
    (Functional Restoration of Bacteriomes and Viromes by Fecal Microbiota Transplantation - PubMed (nih.gov))
  6. Lee, J., Mohsen, A., Banerjee, A., McCullough, L.D., Mizuguchi, K., Shimaoka, M., Kiyono, H. and Park, E.J. 2021. Distinct age-specific miregulome profiling of isolated small and large intestinal epithelial cells in mice. Int. J. Mol. Sci. 22: 3544. (2021)
    (Distinct Age-Specific miRegulome Profiling of Isolated Small and Large Intestinal Epithelial Cells in Mice - PubMed (nih.gov))
  7. Yuki, Y., Uchida, Y., Sawada, S., Nakahashi-Ouchida, R., Sugiura, K., Mori, H., Yamanoue, T., Machita, T., Honma, A., Kurokawa, S., Mukerji, R., Briles, D.E., Akiyoshi, K. and Kiyono, H. 2021. Characterization and specification of a trivalent protein-based Pneumococcal vaccine formulation using an adjuvant-free nanogel nasal delivery system. Mol. Pharm. 18: 1582-1592. doi: 10.1021/acs.molpharmaceut.0c01003. Epub 2021 Feb 23. (2021)
    (Characterization and Specification of a Trivalent Protein-Based Pneumococcal Vaccine Formulation Using an Adjuvant-Free Nanogel Nasal Delivery System - PubMed (nih.gov))
  8. Mizutani, T., Aboagye, S.Y., Ishizaka, A., Afum, T., Mensah, G.I., Asante-Poku, A., Asandem, D.A., Parbie, P.K., Abana, C.Z., Kushitor, D., Bonney, E.Y., Adachi, M., Hori, H., Ishikawa, K., Matano, T., Taniguchi, K., Opare, D., Arhin, D., Asiedu-Bekoe, F., Ampofo, W.K., Yeboah-Manu, D., Koram, K.A., Anang, A.K. and Kiyono, H. 2021. Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis. Sci. Rep. 11: 13945. doi: 10.1038/s41598-021-93345-y. (2021)
    (Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis - PubMed (nih.gov))
  9. Wang, Y., Hosomi, K., Shimoyama, A., Yoshii, K., Nagatake, T., Fujimoto, Y., Kiyono, H. , Fukase, K. and Kunisawa, J. 2021. Lipopolysaccharide derived from the lymphoid-resident commensal bacteria Alcaligenes faecalis functions as an effective nasal adjuvant to augment IgA antibody and Th17 cell responses. Front. Immunol. 12: 699349. doi: 10.3389/fimmu.2021.699349. eCollection 2021. (2021)
    (Lipopolysaccharide Derived From the Lymphoid-Resident Commensal Bacteria Alcaligenes faecalis Functions as an Effective Nasal Adjuvant to Augment IgA Antibody and Th17 Cell Responses - PubMed (nih.gov))
  10. Parbie, P.K., Mizutani, T., Ishizaka, A., Kawana-Tachikawa, A., Runtuwene, L.R., Seki, S., Abana, C.Z., Kushitor, D., Bonney, E.Y., Ofori, S.B., Uematsu, S., Imoto, S., Kimura, Y., Kiyono, H. , Ishikawa, K., Ampofo, W.K. and Matano, T. 2021. Dysbiotic fecal microbiome in HIV-1 infected individuals in Ghana. Front. Cell Infect. Microbiol. 11: 646467. doi: 10.3389/fcimb.2021.646467. eCollection 2021. (2021)
    (Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana - PubMed (nih.gov))
  11. Nakahashi-Ouchida, R., Uchida, Y., Yuki, Y., Katakai, Y., Yamanoue, T., Ogawa, H., Munesue, Y., Nakano, N., Hanari, K., Miyazaki, T., Saito, Y., Umemoto, S., Sawada, S.I., Mukerji, R., Briles, D.E., Yasutomi, Y., Akiyoshi, K. and Kiyono, H. 2021. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci. Vaccine. 39: 3353-3364. doi: 10.1016/j.vaccine.2021.04.069. Epub 2021 May 17. (2021)
    (A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci - PubMed (nih.gov))
  12. Takasato, Y., Kurashima, Y., Kiuchi, M., Hirahara, K., Murasaki, S., Arai, F., Izawa, K., Kaitani, A., Shimada, K., Saito, Y., Toyoshima, S., Nakamura, M., Fujisawa, K., Okayama, Y., Kunisawa, J., Kubo, M., Takemura, N., Uematsu, S., Akira, S., Kitaura, J., Takahashi, T., Nakayama, T. and Kiyono, H. 2021. Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal Immunol. 14: 640-651. doi: 10.1038/s41385-020-00358-3. Epub 2020 Dec 10. (2021)
    (Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy - PubMed (nih.gov))
  13. Liu, Z., Hosomi, K., Shimoyama, A., Yoshii, K., Sun, X., Lan, H., Wang, Y., Yamaura, H., Kenneth, D., Saika, A., Nagatake, T., iyono, H. , Fukase, K. and Kunisawa, J. 2021. Chemically synthesized alcaligenes lipid A as an adjuvant to augment immune responses to haemophilus influenzae type B conjugate vaccine. Front. Pharmacol. 12: 763657. doi: 10.3389/fphar.2021.763657. eCollection 2021. (2021)
    (Chemically Synthesized Alcaligenes Lipid A as an Adjuvant to Augment Immune Responses to Haemophilus Influenzae Type B Conjugate Vaccine - PubMed (nih.gov))
  14. Tada, R., Hidaka, A., Tanazawa, Y., Ohmi, A., Muto, S., Ogasawara, M., Saito, M., Ohshima, A., Iwase, N., Honjo, E., Kiyono, H. , Kunisawa, J. and Negishi, Y. 2021. Role of interleukin-6 in antigen-specific mucosal immunoglobulin A induction by cationic liposomes. Int. Immunopharmacol. 101 (Pt A): 108280. doi: 10.1016/j.intimp.2021.108280. Epub 2021 Oct 29. (2021)
    (Role of interleukin-6 in antigen-specific mucosal immunoglobulin A induction by cationic liposomes - PubMed (nih.gov))
  15. Ishizaka, A., Koga, M., Mizutani, T., Lim, L.A., Adachi, E., Ikeuchi, K., Ueda, R., Aoyagi, H., Tanaka, S., Kiyono, H. , Matano, T., Aizaki, H., Yoshio, S., Mita, E., Muramatsu, M., Kanto, T., Tsutsumi, T. and Yotsuyanagi, H. 2021. Prolonged gut dysbiosis and fecal excretion of hepatitis A virus in patients infected with human immunodeficiency virus. Viruses. 13: 2101. doi: 10.3390/v13102101. (2021)
    (Prolonged Gut Dysbiosis and Fecal Excretion of Hepatitis A Virus in Patients Infected with Human Immunodeficiency Virus - PubMed (nih.gov))
  16. Usami, K., Niimi, K., Matsuo, A., Suyama, Y., Sakai, Y., Sato, S., Fujihashi, K., Kiyono, H. , Uchino, S., Furukawa, M., Islam, J., Ito, K., Moriya, T., Kusumoto, Y., Tomura, M., Hovey, R.C., Sugawara, J., Yoneyama, H., Kitazawa, H., Watanabe, K., Aso, H. and Nochi, T. 2021. The gut microbiota induces Peyer's-patch-dependent secretion of maternal IgA into milk. Cell Rep. 36: 109655. doi: 10.1016/j.celrep.2021.109655. (2021)
    (The gut microbiota induces Peyer's-patch-dependent secretion of maternal IgA into milk - PubMed (nih.gov))
  17. Ishizaka, A., Koga, M., Mizutani, T., Parbie, P.K., Prawisuda, D., Yusa, N., Sedohara, A., Kikuchi, T., Ikeuchi, K., Adachi, E., Koibuchi, T., Furukawa, Y., Tojo, A., Imoto, S., Suzuki, Y., Tsutsumi, T., Kiyono, H. , Matano, T. and Yotsuyanagi, H. 2021. Unique gut microbiome in HIV patients on antiretroviral therapy (ART) suggests association with chronic inflammation. Microbiol. Spectrum. 9: e0070821. doi: 10.1128/Spectrum.00708-21. Epub 2021 Aug 11. (2021)
    (Unique Gut Microbiome in HIV Patients on Antiretroviral Therapy (ART) Suggests Association with Chronic Inflammation - PubMed (nih.gov))
  18. Ono-Ohmachi, A., Yamada, S., Uno, S., Tamai, M., Soga, K., Nakamura, S., Udagawa, N., Nakamichi, Y., Koide, M., Morita, Y., Takano, T., Itoh, T., Kakuta, S., Morimoto, C., Matsuoka, S., Iwakura, Y., Tomura, M., Kiyono, H. , Hachimura, S. and Nakajima-Adachi, H. 2021. Effector memory CD4+T cells in mesenteric lymph nodes mediate bone loss in food-allergic enteropathy model mice, creating IL-4 dominance. Mucosal Immunol. 14: 1335-1346. doi: 10.1038/s41385-021-00434-2. Epub 2021 Jul 29. (2021)
    (Effector memory CD4 + T cells in mesenteric lymph nodes mediate bone loss in food-allergic enteropathy model mice, creating IL-4 dominance - PubMed (nih.gov))
  19. Takahashi, Y., Inoue, Y., Kuze, K., Sato, S., Shimizu, M., Kiyono, H. , Yamauchi, Y. and Sato, R. 2021. Comparison of gene expression and activation of transcription factors in organoid-derived monolayer intestinal epithelial cells and organoids. Biosci. Biotechnol. Biochem. 85: 2137-2144. doi: 10.1093/bbb/zbab136. (2021)
    (Comparison of gene expression and activation of transcription factors in organoid-derived monolayer intestinal epithelial cells and organoids - PubMed (nih.gov))
  20. Sasou, A., Yuki, Y., Kurokawa, S., Sato, S., Goda, Y., Uchida, M., Matsumoto, N., Sagara, H., Watanabe, Y., Kuroda, M., Sakon, N., Sugiura, K., Nakahashi-Ouchida, R., Ushijima, H., Fujihashi, K. and Kiyono, H. 2021. Development of antibody-fragment-producing rice for neutralization of human norovirus. Front. Plant Sci. 12: 639953. (2021)
    (Development of Antibody-Fragment-Producing Rice for Neutralization of Human Norovirus - PubMed (nih.gov))
  21. Kurashima, Y., Kigoshi, T., Murasaki, S., Arai, F., Shimada, K., Seki, N., Kim, Y.G., Hase, K., Ohno, H., Kawano, K., Ashida, H., Suzuki, T., Morimoto, M., Saito, Y., Sasou, A., Goda, Y., Yuki, Y., Inagaki, Y., Iijima, H., Suda, W., Hattori, M. and Kiyono, H. 2021. Pancreatic Glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nature Commun. 12: 1067. (2021)
    (Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation - PubMed (nih.gov))
  22. Yuki, Y., Nojima, M., Hosono, O., Tanaka, H., Kimura, Y., Satoh, T., Imoto, S., Uematsu, S., Kurokawa, S., Kashima, K., Mejima, M., Nakahashi-Ouchida, R., Uchida, Y., Marui, T., Yoshikawa, N., Nagamura, F., Fujihashi, K. and Kiyono, H. 2021. Oral MucoRice-CTB vaccine for safety and microbiota-dependent immunogenicity in humans: a phase 1 randomized trial. Lancet Microbe. Sep;2(9):e429-e440. doi: 10.1016/S2666-5247(20)30196-8. Epub 2021 Jun 25. (2021)
    (Oral MucoRice-CTB vaccine for safety and microbiota-dependent immunogenicity in humans: a phase 1 randomised trial - PubMed (nih.gov))

2022

  1. Kamioka, M., Goto, Y., Nakamura, K., Yokoi, Y., Sugimoto, R., Ohira, S., Kurashima, Y., Umemoto, S., Sato, S., Kunisawa, J., Takahashi, Y., Domino, S.E., Renauld, J-C., Nakae, S., Iwakura, Y., Peter B.E., Ayabe, T. and Kiyono, H. 2022. Intestinal commensal microbiota and cytokines regulate Fut2+ Paneth cells for gut defense. Proc. Natl. Acad. Sci. USA. 119: e2115230119. doi: 10.1073/pnas.2115230119. (2022)
    (Intestinal commensal microbiota and cytokines regulate Fut2 + Paneth cells for gut defense - PubMed (nih.gov))
  2. Yuki, Y., Nojima, Kashima, K., Sugiura, K., Maruyama, S., Kurokawa, S., Yamanoue, T., Nakahashi-Ouchida, R., Nakajima, H., Hiraizumi, T., Kohno, H., Goto, E., Fujihashi, K. and Kiyono, H. 2022. Oral MucoRice-CTB vaccine is safe and immunogenic in healthy US adults. Vaccine. 40:3372-3379. doi: 10.1016/j.vaccine.2022.04.051. Epub 2022 Apr 26. (2022)
    (Oral MucoRice-CTB vaccine is safe and immunogenic in healthy US adults - PubMed (nih.gov))
  3. Mizutani, T., Ishizaka, A., Koga, M., Ikeuchi, K., Saito, M., Adachi, E., Yamayoshi, S., Iwatsuki-Horimoto, K., Yasuhara, A., Kiyono, H., Matano, T., Suzuki, Y., Tsutsumi, T., Kawaoka, Y. and Yotsuyanagi, H. 2022. Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization. Microbiol. Spectr. 10:e0168921. doi: 10.1128/spectrum.01689-21. Epub 2022 Mar 7. (2022)
    (Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization - PubMed (nih.gov))

Reviews (Refereed)

2017 |2018 |2019 |2020 | 2021 | 2022

2017

  1. Nelson, S., Kiyono, H. and Kurashima, Y. 2017. Epithelial extracellular ATP: an initiator of immunity to parasitic infections. Immunol. Cell Biol. 95:117-118. (2017)
    (Epithelial extracellular ATP: an initiator of immunity to parasitic infections - PubMed (nih.gov))
  2. Azegami, T., Yuki, Y., Hayashi, K., Nakamura, M., Hishikawa, A., Kiyono, H. and Itoh, H. 2016. ISH NIA OS-02 attenuation of hypertension by less-invasive intranasal vaccination against angiotensin II type 1 receptor in spontaneously hypertensive rats. J. Hypertens. 34 Suppl 1: e42. (2016)
    (Journal of Hypertension 掲載 リンク貼れませんでした)

2017

  1. Park, E.J., Shimaoka, M. and Kiyono, H. 2017. MicroRNA-mediated dynamic control of mucosal immunity. Int. Immunol. 29: 157-163. (2017)
    (MicroRNA-mediated dynamic control of mucosal immunity - PubMed (nih.gov))
  2. Kurashima, Y. and Kiyono, H. 2017. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu. Rev. Immunol. 35: 119-147. (2017)
    (Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing - PubMed (nih.gov))
  3. Nakahashi-Ouchida, R., Yuki, Y. and Kiyono, H. 2017. Development of a nanogel-based nasal vaccine as a novel antigen delivery system. Expert Rev. Vaccines. 16: 1231-1240. (2017)
    (Development of a nanogel-based nasal vaccine as a novel antigen delivery system - PubMed (nih.gov))
  4. Shibata, N., Kunisawa, J. and Kiyono, H. 2017. Dietary and microbial metabolites in the regulation of host immunity. Front. Microbiol. 8: 2171. (2017)
    (Dietary and Microbial Metabolites in the Regulation of Host Immunity - PubMed (nih.gov))
  5. Kurashima, Y., Yamamoto, D., Nelson, S., Uematsu, S., Ernst, P.B., Nakayama, T. and Kiyono, H. 2017. Mucosal mesenchymal cells: secondary barrier and peripheral educator for the gut immune system. Front. Immunol. 8: 1787. (2017)
    (Mucosal Mesenchymal Cells: Secondary Barrier and Peripheral Educator for the Gut Immune System - PubMed (nih.gov))

2018

  1. Azegami, T., Yuki, Y., Nakahashi-Ouchida, R., Itoh, H. and Kiyono, H. 2018. Nanogel-based nasal vaccines for infectious and lifestyle-related diseases. Mol. Immunol. 98: 19-24. (2018)
    (Nanogel-based nasal vaccines for infectious and lifestyle-related diseases - PubMed (nih.gov))
  2. Nakahashi-Ouchida, R., Yuki, Y. and Kiyono, H. 2018. Cationic pullulan nanogel as a safe and effective nasal vaccine delivery system for respiratory infectious diseases. Hum. Vaccine Immunother. 14: 2189-2193. (2018)
    (Cationic pullulan nanogel as a safe and effective nasal vaccine delivery system for respiratory infectious diseases - PubMed (nih.gov))
  3. Inami, A., Kiyono, H. and Kurashima, Y. 2018. ATP as a pathophysiologic mediator of bacteria-host crosstalk in the gastrointestinal tract. Int. J. Mol. Sci. 2018. 19: 2371. (2018)
    (ATP as a Pathophysiologic Mediator of Bacteria-Host Crosstalk in the Gastrointestinal Tract - PubMed (nih.gov))

2019

  1. Tokuhara, D., Kurashima, Y., Kamioka, M., Nakayama, T., Ernst, P.B. and Kiyono, H. 2019. A comprehensive understanding of the gut mucosal immune system in allergic inflammation. Allergol. Int. 68: 17-25. (2019)
    (A comprehensive understanding of the gut mucosal immune system in allergic inflammation - PubMed (nih.gov))
  2. Kiyono, H. and Izuhara, K. 2019. New trends in mucosal immunology and allergy. Allergol. Int. 68: 1-3. (2019)
    (New trends in mucosal immunology and allergy - PubMed (nih.gov))
  3. Kurashima, Y., Tokuhara, D., Kamioka, M., Inagaki, Y. and Kiyono, H. 2019. Intrinsic control of surface immune and epithelial homeostasis by tissue-resident gut stromal cells. Front. Immunol. 19: 1281. (2019)
    (Intrinsic Control of Surface Immune and Epithelial Homeostasis by Tissue-Resident Gut Stromal Cells - PubMed (nih.gov))
  4. Hosomi, K., Kiyono, H. and Kunisawa, J. 2019. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes. 23:1-9. (2019)
    (Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases - PubMed (nih.gov))

2020

  1. Osier, F., Ting, J.P.Y., Fraser, J., Lambrecht, B.N., Romano, M., Gazzinelli, R.T., Bortoluci, K.R., Zamboni, D.S., Akbar, A.N., Evans, J., Brown, D.E., Patel, K.D., Wu, Y., Perez, A.B., Pérez, O., Kamradt, T., Falk, C., Barda-Saad, M., Ariel, A., Santoni, A., Annunziato, F., Cassatella, M.A., Kiyono, H. , Chereshnev, V., Dieye, A., Mbow, M., Mbengue, B., Niang, M.D.S. and Suchard, M. 2020. The global response to the COVID-19 pandemic: how have immunology societies contributed? Nat. Rev. Immunol. 10: 594-602. (2020)
    (The global response to the COVID-19 pandemic: how have immunology societies contributed? - PubMed (nih.gov))

2021

  1. Campillo-Gimenez, L., Rios-Covian, D., Rivera-Nieves, J., Kiyono, H. , Chu, H. and Ernst, P.B. 2021. Microbial-driven immunological memory and its potential role in microbiome editing for the prevention of colorectal cancer. Front. Cell. Infect. Microbiol. 11: 752304. doi: 10.3389/fcimb.2021.752304. eCollection 2021. (2021)
    (Microbial-Driven Immunological Memory and Its Potential Role in Microbiome Editing for the Prevention of Colorectal Cancer - PubMed (nih.gov))
  2. Kiyono, H. , Yuki, Y., Nakahashi-Ouchida, R. and Fujihashi, K. 2021. Mucosal vaccines: wisdom from now and then. Int. Immunol. 33: 767-774. doi: 10.1093/intimm/dxab056. (2021)
    (Mucosal vaccines: wisdom from now and then - PubMed (nih.gov))

2022

  1. Zhang, Z., Tanaka, I., Pan, Z., Ernst, P.B., Kiyono, H. , Kurashima, Y. 2022. Intestinal homeostasis and inflammation: gut microbiota at the crossroads of pancreas-intestinal barrier axis. Eur. J. Immunol. Online ahead of print.PMID: 35476255 doi: 10.1002/eji.202149532. (2022)
    (Intestinal homeostasis and inflammation: Gut microbiota at the crossroads of pancreas-intestinal barrier axis - PubMed (nih.gov))

BOOKS

  1. Kiyono, H. and Uematsu, S. 2017. Experimental Medicine, Biological Barrier Research Up-to-Date Special Edition. Experimental Medicine, Yodosha, Japan, pp. 1-222. (Japanese) (2017)
    (実験医学増刊 Vol.35 No.7 生態バリア 羊土社)
  2. Kiyono, H. and Pascual, D.W. 2020. Mucosal Vaccines, Innovation for Preventing Infectious Diseases, Second Edition. Elsevier. ISBN: 978-0-12-811924-2, pp. 1-915 (2020)
    (Mucosal Vaccines : Innovation for Preventing Infectious Diseases 第二版 ACADEMIC PRESS, INC. 洋書)